In the first half of 2023, electrified vehicle production surged by 70%, highlighting the rapid pace of investment in EV production capabilities, and continues to grow. As battery technologies evolve, the future promises breakthroughs in recyclability and energy efficiency. Innovations like solid-state batteries are set to revolutionise manufacturing priorities and reshape the EV supply chain. These over-the-air updates are becoming essential for ensuring vehicle reliability, safety and security, and are opening new revenue streams for manufacturers. Moreover, its software platform manages real-time energy flows and integrates with solar systems to optimize renewable energy usage.
In 2025, the focus will be enhancing ADAS features, such as adaptive cruise control, lane-keeping assistance, automatic emergency braking, and more. While some regions already allow limited AV testing and deployment, 2025 will likely see a more transparent legal framework surrounding autonomous driving technology. This regulatory clarity will pave the way for broader AV adoption in cities, particularly in controlled environments like urban areas or designated autonomous vehicle lanes. As autonomous vehicles become more mainstream, governments and regulatory bodies will need to create new laws to ensure their safe deployment.
By the end of that decade, it’s predicted that over 30% of the cars on the road will be EVs. The massive rotation in the global vehicle fleet is predicted to take place in the 2030s. Bloomberg New Energy Finance expects EVs to account for 10% of all new car sales by 2025 and 58% by 2040. After a disappointing 2019 in terms of EV sales, 2020 sales surpassed expectations, growing over 40% year-over-year. EV sales grew from less than 1% of total vehicle sales a decade ago to more than 4% today. Rapid technological and environmental innovations have forced incumbents to adapt to new challenges.
General Intelligence strengthens the evolution of software-defined vehicles by aligning human-inspired learning with safety. It also advances autonomous driving by enabling adaptability across vehicle types and conditions. In addition, the unit supports multiple communication protocols, including CAN and FlexRay. It also works with Ethernet and LIN, enabling integration across passenger cars, buses, trucks, and autonomous vehicles. Chinese startup Move-X Autonomous Driving offers Level 4 autonomous driving through integrated vehicle platforms designed for commercial deployment. TeraDAR strengthens sensor fusion by providing high-resolution, all-weather imaging that improves vehicle perception and increases safety.
The law emphasises a cleaner and more efficient use of fossil fuels, placing a higher emphasis on sustainability and developing renewable energy infrastructures. This comes as China continues to make their presence known in the global EV scene, with ramped-up production and dominance in the international EV market. In 2023, the global connected car market was valued at $80.87 billion and projecting remarkable growth. It is expected to expand from $95.14 billion in 2024 to $386.82 billion by 2032, reflecting a robust compound annual growth rate (CAGR) of 19.2% over the forecast period according to some figures.
Telematics and IoT sensors monitor vehicle condition and enable predictive maintenance. For instance, Planet42 extends access to underbanked consumers in South Africa and Mexico. Additionally, the startup offers features such as platooning algorithms for safe and efficient vehicle grouping. It also provides lane-change algorithms that ensure comfortable lateral movement and personalized passenger comfort profiles refined with each journey. The World Health Organization links 1.35 million annual deaths to road accidents, creating urgency for autonomy. AI, ML, and computing allow vehicles to process data points per second with split-second precision.
Therefore, you should focus on environmentally conscious manufacturing processes and eco-friendly cars like electric vehicles. This deal comes at a time when car sales in the EU have seen a noticeable dip as consumer preferences shift. Data suggests a decline in car sales across most categories, particularly traditional fuel vehicles like petrol and diesel, which saw significant drops in market share and registrations. While BEVs and PHEVs showed some growth in September 2024, the year-to-date figures for BEVs are still lower than last year, and PHEVs also experienced a notable decline.
The strides made in EV battery innovation, renewable energy adoption, and sustainability are paving the way for a more resilient and forward-thinking industry. These articles highlight not just the progress made but also the opportunities and challenges that lie ahead. Xiaomi’s foray into the electric vehicle market is exemplified by its state-of-the-art factory, capable of producing an electric car every 76 seconds. This article offers an inside look at the facility and Xiaomi’s ambitious plans in the automotive sector. Meanwhile, we are seeing the economic case for sustainable materials strengthen as manufacturers realise operational efficiency gains and reduce their long-term costs. Cross-industry collaboration is emerging as a key enabler, with automotive companies forming partnerships to develop and implement innovative material solutions.
For this in-depth research on the Top Automotive Trends & Startups, we analyzed a sample of 6000+ global startups & scaleups. However, automotive executives need help as they focus on new technology that meets consumer and regulatory demands. This has led to a shift away from traditional automotive infrastructure, which focused on powertrains, interiors, electrical systems, and safety systems.
Further, its AI-enabled depth sensor, HiFi, enhances 3D sensing with 1.6-megapixel supersampled depth, 8 TOPS of AI compute, a 136° ultra-wide field of view, and connectivity options like PoE and USB-C. This platform uses secured safety assurance and risk-mitigation principles to detect and address failures in assisted and self-driving systems. Qumasoft’s solution enables companies to develop, produce, and operate cybersecure vehicles and components efficiently. This reduces development costs and time while enhancing quality and analytical capabilities. Further, the Asia-Pacific region is anticipated to witness rapid growth, with a projected CAGR of 18.3%, driven by rising vehicle sales and evolving safety regulations. These vehicles reduce emissions and feature innovative designs for modern commuters.
The market reflects its role in meeting strict safety rules and consumer demand for smarter vehicles. AI, additive manufacturing, the Internet of Things, and 5G have become sources of product innovation and manufacturing efficiency, which in turn has led to revolutionary changes in customer experience. Finally, automotive manufacturers are increasingly adopting PMO software to standardize the execution of complex projects with globally distributed teams and ensure compliance with industry standards.
Self-driving vehicles are becoming increasingly common and will continue to do so in 2025. Research has indicated that autonomous cars are safer, reduce downtime, expand the last-mile delivery scope, and improve fuel efficiency by 10%. Additionally, several trucking companies have tested self-driving technology, and it will soon become commonplace, with fleets of autonomous trucks sharing the road with traditional vehicles.
This shift is driven by the growing need for more efficient power management in electric vehicles, resulting in smarter and more streamlined EV designs. 2025 will witness the automotive industry transitioning from Level 2 autonomy to Levels 2.5 and 3, representing a substantial evolution in automotive technology and enhancing vehicle automation and safety. Almost 40% of all autonomous vehicles sold in 2025 are predicted to have L2 ADAS features. German OEMs already have a full roadmap from L2 to L3, with Mercedes Benz commercializing their DrivePilot system, and BMW is likely to follow soon. Emerging companies are developing advanced sensing technologies to collect extensive vehicle data and enable vehicles to better understand their surroundings. Blockchain technology is increasingly being utilized in the automotive industry for various applications.
For the eighth time, we asked managers and decision-makers in the automotive industry which trends and developments they are currently focusing on. The automotive industry report of the Future Readiness Monitor 2025 provides differentiated insights into strategies, challenges and fields of action in the industry. The trends in automobile industry and startups outlined in this report only scratch the surface of automotive innovations that we identified during our in-depth research. Identifying new opportunities and emerging technologies to implement into your business early on goes a long way in gaining a competitive advantage. Get in touch to easily and exhaustively scout relevant technologies & startups that matter to you. Operating from Germany and the US, EcoG is a startup offering an IoT-based operating system and platform for EV charging.
Paul Marinelli gets straight to the point—exploring key trends and innovations shaping tomorrow’s mobility in just five minutes. Long journeys are no longer exhausting and tedious, as everyone on board can watch movies, stream their favorite music, and play games through pre-loaded entertainment services. These cars even come equipped with Wi-Fi hotspots, ensuring easy Internet access for all passengers. Wireless and ultra-fast charging stations are also emerging as promising solutions to ease the transition to EVs further. Wireless charging could eliminate the need for physical connectors, offering a more seamless user experience. Digital twins—virtual replicas of physical systems—are gaining traction, enabling manufacturers to simulate scenarios and predict outcomes in real-time.
The AI secure payment tips for expensive products in Automotive industry in 2026 is evolving as AI, autonomous technologies, and software-defined vehicles reshape global mobility systems. This AI in Automotive Market Report examines the trends and technologies driving vehicle intelligence, operational efficiency, safety advancement, and data-driven mobility innovation. What initially appeared to be a niche sector is now the foundation of the auto industry’s transition.
Additionally, the onboard speed recorder limits the speed to discourage dangerous driving behaviors. Connected vehicles are fostering new business models centered on shared mobility, offering an alternative to traditional vehicle ownership. This shift supports mobility-as-a-service (MaaS), reducing the number of idle vehicles and addressing urban transportation needs without adding more cars. German startup ChargeX offers a modular EV charging solution that converts parking spaces into charging stations. The startup’s platform, Aqueduct, is easy to install, has 4 charging modules with up to 22kW, provides monthly reports, and uses a Typ2 charging cable.
Also, radar ensures long-range detection of moving objects in all weather conditions, which is critical for adaptive cruise control and highway safety. US-based startup NuNami designs automotive semiconductors that provide reliable connectivity and safety-critical interfaces. Its modules integrate high-voltage isolation, digital error correction, and built-in self-testing to ensure secure data transfer and fault-tolerant operation in automotive systems. They also incorporate floating-point units that improve computational accuracy and performance. The startup provides single-chip motor control solutions that integrate RISC-V processor cores with programmable MOSFET drivers, FD-CAN and LIN interfaces, and dedicated PWM modules. The systems optimize the performance of electric power steering, vehicle pumps, cooling fans, and HVAC modules.
Peugeot introduced groundbreaking technologies like the Hypersquare control system and steer-by-wire, marking a significant leap in electric vehicle design and user experience. These innovations represent the brand’s commitment to redefining driving dynamics in the EV era. Despite initial scepticism, the automotive industry is embracing enhanced connectivity by enabling real-time updates and post-production feature additions. Through our work with automotive innovators, we witness first-hand how rapidly this sector is evolving. From electrification and software integration to new mobility models, the industry faces unprecedented change.
Digital platforms enable smooth access and allow users to book, swap, and unlock vehicles through mobile apps. For example, Hyundai partners with Revv in India to expand subscription offerings through a mobile-first platform. AI and ML processors support object recognition, path planning, and decision-making. For instance, Texas Instruments‘ AWR2544 radar achieves sensing beyond 200 meters.
Localized production and sourcing are gaining momentum as companies aim to mitigate risks and ensure a steady supply of components. Automakers are adopting greener processes, from sourcing eco-friendly materials to utilizing renewable energy in manufacturing plants. Many of those trends will be on display at the Consumer Electronics Show next week in Las Vegas. Honda will be showing its Series 0 platform that will be used for its SAE Level 4 driverless car in 2026. Recent auto trends show that customers prefer to experience a car or dealership before purchasing.
Batteries are the heart of any electric vehicle, and improvements in battery technology will continue to shape the future of EVs. Companies focus on increasing energy density to improve range and reduce charging times. The trends shaping automotive manufacturing in 2025 emphasize innovation, sustainability, and connectivity. As electric vehicles become mainstream, digitalization reshapes production, and mobility services redefine car ownership, the industry is set to transform how vehicles are manufactured and used.
This digital transformation enhances scalability, a key driver in the competitive automotive sector. Companies like Huawei are allocating significant resources to developing EVs with cutting-edge ADAS and autonomous features. These technologies aim to reduce accidents and provide a safer driving experience.
The global automotive industry, responsible for 10% of the world’s carbon dioxide emissions, faces ongoing pressure to overhaul its practices. However, the landscape is proving difficult to steady with an intricate maze of regulations that differ by country or region and lack a unified benchmarking process for sustainability. The SAE, originally the Society of Automotive Engineers, has identified six levels of automation on the path to completely autonomous vehicles.
Legacy brands like Ford, GM, and Volkswagen are launching dedicated EV lines, while startups like Rivian and Lucid push luxury and performance boundaries. Supply chains are being restructured to secure critical minerals and diversify chip sources. The industry is also innovating in battery chemistry, thermal management, and vehicle-to-grid (V2G) tech to improve EV usability. As we progress through 2025, these trends will continue to reshape the automotive landscape.
Semiconductors ensure energy efficiency, consistent power distribution, and power the battery systems in EVs. They also enable software updates, enhance entertainment, and facilitate smooth communication in connected and software-defined vehicles. Let’s embark on this journey together, where ‘driving the future’ is more than just empty rhetoric. In 2025, consumers may opt for flexible ownership models that allow them to pay a monthly fee to access a range of vehicles, including electric cars, luxury models, and even autonomous vehicles. This approach offers more convenience and flexibility than traditional car ownership and allows consumers to change vehicles based on their needs.
Collecting user data through these sensors creates ample opportunities for marketers to promote upselling. Automakers and technology companies are forming partnerships due to vehicles’ constantly evolving tech requirements. This is especially necessary for electric, connected, and autonomous vehicles, which require specialized software and advanced technology to function safely. Manufacturers are partnering with tech companies to design and produce the new operating systems necessary for the next generation of technologically advanced vehicles.
Its RISC-V IP processors adopt 32/64-bit architectures supported by a nine-stage dual-issue pipeline. Connectivity also adds momentum, with 5G and V2X semiconductors enabling real-time data exchange and secure over-the-air updates. Also, regulatory frameworks such as ISO and Europe’s mandate for emergency braking systems encourage mission-critical chip integration across new vehicles.
DAM can print parts as large as 1000x3000x1000mm using engineering-grade recycled plastics. Firstly, it accelerates the design and testing process through rapid prototyping. The Automotive Trends & Startups outlined in this report only scratch the surface of trends that we identified during our data-driven innovation & startup scouting process. Identifying new opportunities & emerging technologies to implement into your business goes a long way in gaining a competitive advantage. The vehicle’s architecture includes a 3D mapping system that merges GPS and IMU data with digital maps to determine precise positioning and plan optimal routes.
In addition, it adapts to applications across fleets, workplaces, airports, and multi-housing units. Its electronic control unit (ECU) platform combines AUTOSAR software modules with customizable hardware. It manages functions such as steer-by-wire, brake-by-wire, engine control, and ADAS.